
Thunder High Power Products

FRED Ultrafast Soft Recovery Diode, 30A

Features:

- Ultrafast Recovery
- 175°C operating junction temperature
- High frequency operation
- Low power loss, less RFI and EMI
- Low I_R value
- High surge capacity
- Epitaxial chip construction

Product Summary		
VR	1200 V	
lf(AV)	2*15A	
trr	32 ns	

Description/Applications

These diodes are optimized to less losses and EMI/RFI in high frequency power conditioning system. The soft recovery behavior of the diodes. These devices are ideally suited for HF welding power converters and other applications where the switching losses are not significant portion of the total losses.

Absolute Maximum Ratings

Absolute Maximum Ratings				
Parameter	Symbol	Test Conditions	Values	Units
Repetitive peak reverse voltage	Vrrm		1200	V
Continuous forward current	lF(AV)	Tc =110°C	30	
Single pulse forward current	IFSM	Tc =25°C	300	А
Maximum repetitive forward current	IFRM	Square wave, 20kHZ	36	
Operating junction	Тј		175	°C
Storage temperatures	Tstg		-55 to +175	°C

Rev.A01 1/4

Electrical characteristics (Ta=25°C unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур.	Max.	Unit
Breakdown voltage Blocking voltage	VBR, V _R	Ir=100µA	1200			
Forward voltage (Per Diode)	I _F =15A		1.8	2.50	V	
	I _F =15A, T _j =125℃		1.50	2.4		
Reverse leakage		Vr= Vrrm			20	
current(Per Diode)	Tj=150°C, V _R =1200V			200	μΑ	
Reverse recovery	_	I _F =0.5A, I _R =1A, I _{RR} =0.25A		50	60	
time(Per Diode)	trr	I _F =1A,V _R =30V, di/ <i>dt</i> =200A/us		32	50	ns

Thermal characteristics

Paramter	Symbol	Тур	Units
Junction-to-Case	$R_{ heta JC}$	0.8	°C/W

Rev.A01 2 / 4

Electrical performance (typical)

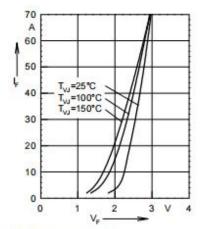


Fig. 1 Forward current versus voltage drop.

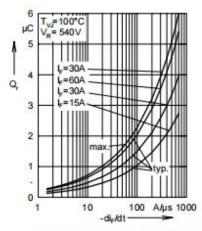


Fig. 2 Recovery charge versus -di_e/dt.

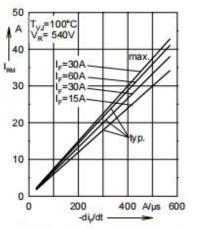


Fig. 3 Peak reverse current versus -di_/dt.

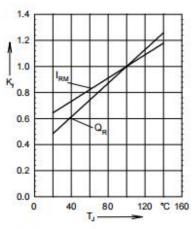


Fig. 4 Dynamic parameters versus junction temperature.

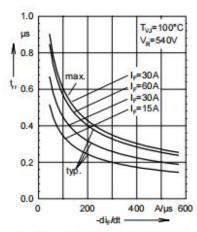


Fig. 5 Recovery time versus -di_/dt.

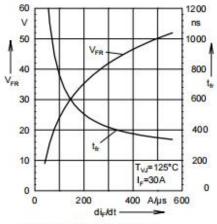


Fig. 6 Peak forward voltage versus di./dt.

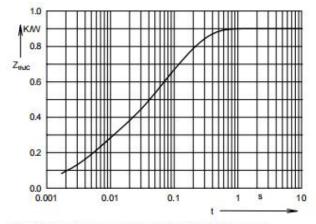
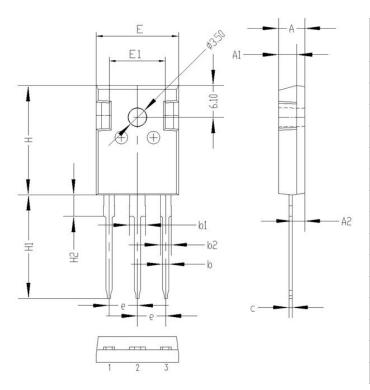


Fig. 7 Transient thermal impedance junction to case.


Rev.A01 3/4

Package Information

TO-247 PACKAGE

Cumbal	Dimensions(millimeters)	
Symbol	Min.	Max.
Α	4.80	5.20
A1	3.30	3.70
A2	2.10	2.50
b	1.00	1.40
b1	2.90	3.30
b2	1.90	2.30
С	0.40	0.80
е	5.25	5.65
Е	15.6	16.0
E1	10.6	11.00
Н	20.8	21.2
H1	19.4	20.4
H2	3.90	4.30
G	5.90	6.30
ΦР	3.30	3.70

Notice

Thunder Microelectronics Incorporated Limited reserves the right to make changes without further notice to any products or specifications herein. When use the product, be sure to obtain the latest specification.

Thunder Microelectronics Incorporated Limited does not assume any liability arising out of the application or any product described herein. When using Thunder Microelectronics Incorporated Limited products in your equipment, you are requested to take adequate safety measures to prevent the equipment from causing a physical injury ,fire or other problem if any of the products become faulty.

-Headquarters

WuXi Thunder Microelectronics Incorporated Limited

Building E1-9F, No.200 LingHu Road, XinWu district, WuXi, China 214135

Tel:+86-510-85160109 Fax:+86-510-85160109

Rev.A01 4 / 4