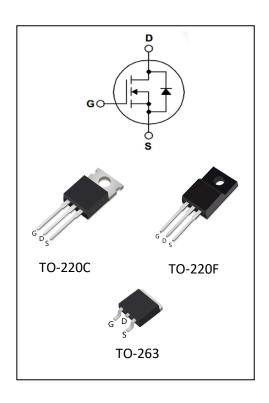


Thunder High Power Products

Silicon N-Channel Planar Power MOSFET

Description


The TH52N20PC TH52N20PF TH52N20PN utilizes the latest processing techniques to achieve low on-resistance per silicon area. Additional features of this MOSFET are $150\,^{\circ}\mathrm{C}$ operating junction temperature and high repetitive peak current capability. These features combine to make this MOSFET a highly efficient, robust and reliable device for PDP driving applications. It can be used in a wide variety of applications.

General Features

- ●V_{DS}=200V,I_D=52A
- •Low ON Resistance, $R_{DS(ON)} = 33 \text{m} \Omega @V_{GS} = 10 \text{V}$, $I_D = 26 \text{A}$
- •Low reverse transfer capacitance
- ●Low Qg for fast response
- Short fall & rise times for fast switching
- ●100% single pulse avalanche energy Test

Application

- Power switching application
- Digital amplifier
- Adapter and charger

Product Summary

V _{DS}	200V
R _{DS(on)}	33mΩ
I _D	52A

Absolute Maximum Ratings

Parameter	Symbol	TH52N20PC	TH52N20PF	TH52N20PN	Unit
Drain-source voltage	$V_{ extsf{DS}}$	200			V
Continuous drain current T _C = 25°C (Silicon limit)	I _D	52			А
Pulsed drain current ($T_C = 25^{\circ}C$, t_p limited by T_{jmax})	I _{DM}	208			Α
Avalanche energy, single pulse (L=10mH, Rg=25 Ω)	E _{AS}	2900		mJ	
Gate-Source voltage	V_{GS}	±30		V	
Power dissipation (T _C = 25°C)	P _D	260 38 260			W
Operating junction and storage temperature	$T_{j}T_{stg}$	-55+150			°C

Thermal Resistance

Parameter	Symbol	TH52N20PC	TH52N20PF	TH52N20PN	Unit
Thermal resistance, junction – case.	RthJC	0.48	3.3	0.48	
Thermal resistance, junction – ambient(min.	RthJA	62.5	62.5	62.5	℃/W
footprint)					

Electrical Characteristic (at Tj = 25 °C, unless otherwise specified)

Davamatar	Cumbal	value			Unit	Test Condition	
Parameter	Symbol	min.	typ.	max.	Ulli	Test Condition	
Static Characteristic							

Drain-source breakdown voltage	BV _{DSS}	200	-	-	V	V _{GS} =0V,I _D =250uA
Gate threshold voltage	$V_{GS(th)}$	2.0	-	4.0	٧	$V_{DS}=V_{GS}$, $I_D=250$ uA
Zero gate voltage drain current		-	-	1	μA	V_{DS} =200V, V_{GS} =0V T_j =25 °C
	I _{DSS}	-	-	10	μΑ	V_{DS} =160V, V_{GS} =0V T_{j} =125 $^{\circ}$ C
Gate-source leakage current	I _{GSS}	-	-	±100	nA	$V_{GS} = \pm 30 \text{V}, V_{DS} = 0 \text{V}$
Drain-source on-state resistance	R _{DS(on)}	-	33	40	mΩ	V _{GS} =10 V, I _D =26 A
Transconductance	g _{fs}	-	35	-	S	V _{DS} =40V, I _D =26A

Dynamic Characteristic

Input Capacitance	C _{iss}	-	3880	-	pF		
Output Capacitance	C _{oss}	-	420	-		V _{GS} =0V, V _{DS} =25V, f=1MHz	
Reverse Transfer Capacitance	C_{rss}	-	8	-			
Gate Total Charge	Q_g	-	56	-	nC		
Gate-Source charge	Q_{gs}	-	18	-		$V_{GS} = 10 \text{ V}, V_{DS} = 160 \text{ V},$ $I_D = 52 \text{ A}$	
Gate-Drain charge	Q_{gd}	-	23	-			
Turn-on delay time	t _{d(on)}	-	55	-		V _{DD} =100V, I _D =52A,	
Rise time	t _r	-	180	-	na		
Turn-off delay time	$t_{d(off)}$	-	49	-	ns	$R_G = 25 \Omega$	
Fall time	t _f	-	30	-			
Gate resistance	R_{G}	-	1	-	Ω	V_{GS} =0V, V_{DS} =0V, f=1MHz	

Body Diode Characteristic

Parameter	Value				l lmit	Tost Condition	
	Symbol	min.	typ.	max.	Unit	Test Condition	
Body Diode Forward Voltage	V_{SD}	-	-	1.5	V	$V_{GS} = 0 V, I_{DS} = 52 A$	
Body Diode Continuous Forward Current	Is	-	-	52	Α	T _C =25°C	
Body Diode Reverse Recovery Time	t _{rr}	-	165	-	ns	Tc=25°C,Is=52A,	
Body Diode Reverse Recovery Charge	Q _{rr}	-	1.4	-	μC	dI/dt=100A/us	

Typical Performance Characteristics

Fig 1: Output Characteristics

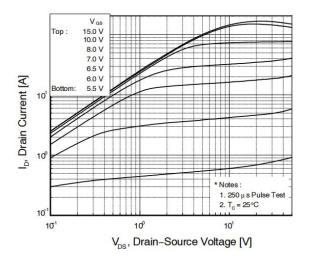


Fig 3: Rds(on) vs Drain Currentand

Gate Voltage

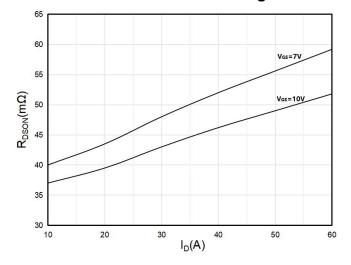


Fig 2: Transfer Characteristics

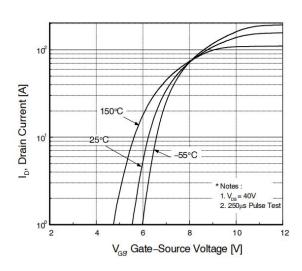
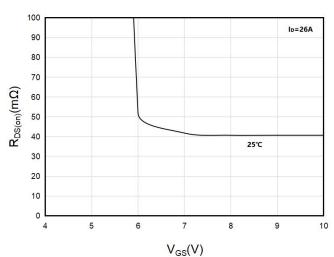



Fig 4: Rds(on) vs Gate Voltage

3

Fig 5: Rds(on) vs. Temperature

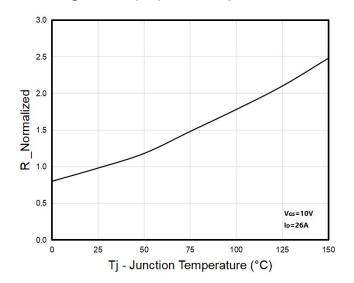


Fig 6: Capacitance Characteristics

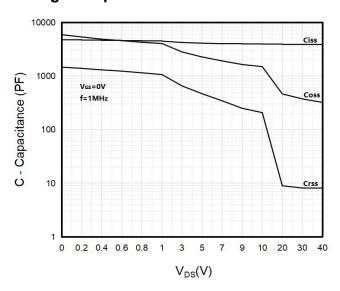


Fig 7: Gate Charge Characteristics

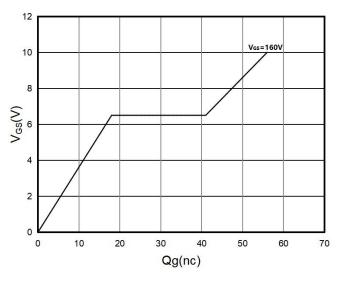


Fig 8: Body-diode Forward Characteristics

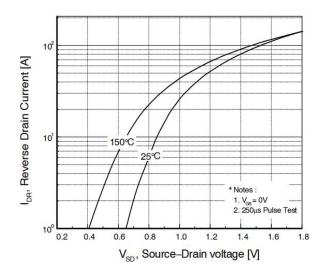


Fig 9: Power Dissipation

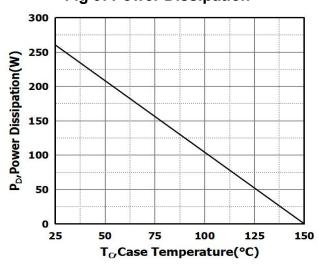


Fig 10: Drain Current Derating

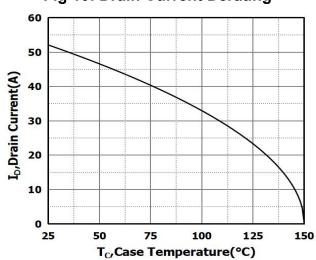


Fig 11: Safe Operating Area

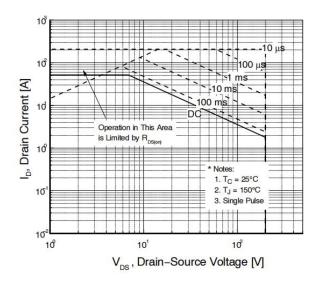
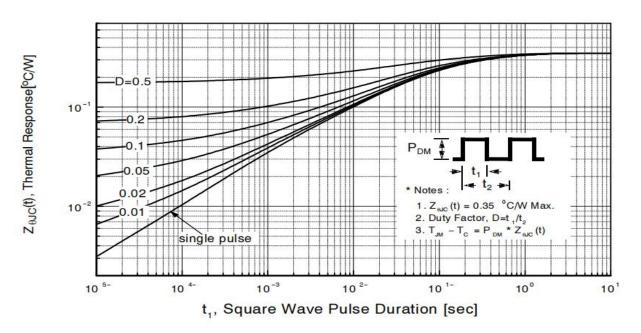
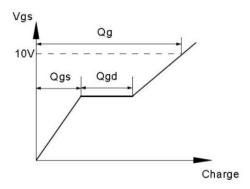
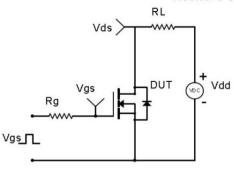
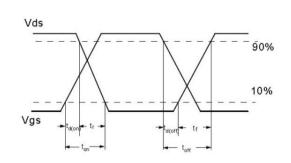



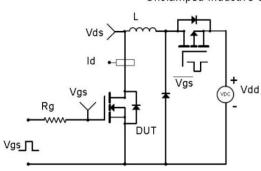

Fig 12: Max. Transient Thermal Impedance

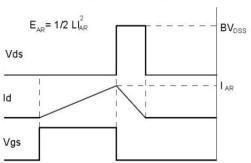


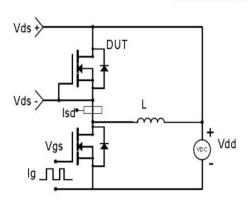
Rev.A02 5

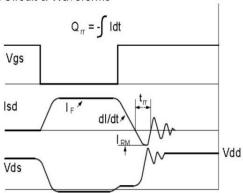

Test Circuit & Waveform

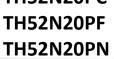

Gate Charge Test Circuit & Waveform



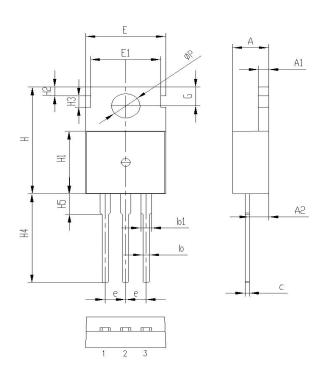

Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

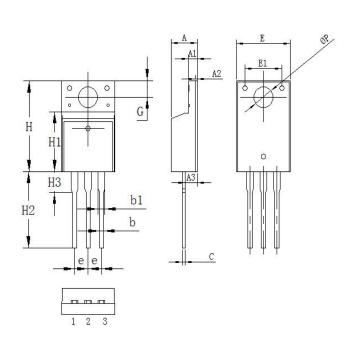


Diode Recovery Test Circuit & Waveforms



Package Information

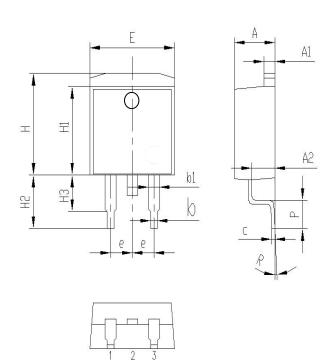
昌德微电


TO-220C PACKAGE

基本尺寸

	单位 mm						
Symbol -	Min	Nom	Max				
A	4. 30	4. 5	4. 70				
A1	1. 20	1. 30	1. 40				
A2	2. 20	2. 4	2. 60				
b	0.60	0.8	1.00				
b1	1. 20	1.30	1. 40				
С	0.40	0.5	0.60				
е	2. 44	2. 54	2. 64				
Е	9.80	10.0	10. 2				
E1	8. 50	8. 70	8. 90				
Н	15. 5	15. 7	15. 9				
H1	9.00	9. 2	9. 40				
Н2	1. 10	1. 34	1. 50				
НЗ	1. 50	1.7	1.90				
Н4	12. 9	13. 3	13.7				
Н5	2.80	3.0	3. 20				
G	2.60	2.8	3. 00				
ФР	3. 40	3.6	3.80				

TO-220F PACKAGE



基本尺寸

C1-1		单位 mm					
Symbol	Min	Nom	Max				
A	4. 55	4. 75	4. 95				
A1	2.40	2. 60	2.80				
A2	0.40	0.60	0.80				
A3	2. 10	2. 30	2. 50				
b1	1. 10	1. 30	1.50				
b	0.60	0.80	1.00				
С	0.42	0. 50	0.58				
е	2. 30	2. 50	2. 70				
E	9. 9	10. 1	10. 3				
E1	6.8	7	7. 2				
Н	15.8	16.0	16. 2				
H1	9. 10	9. 30	9. 50				
H2	12.5	13.0	13. 5				
НЗ	3. 10	3. 30	3. 50				
G	3. 00	3. 20	3. 40				
ФР	3.00	3. 20	3. 40				

TO-263 PACKAGE

基本尺寸

Carrella - 1		单位 mm	
Symbol	Min	Nom	Max
A	4. 40	4.6	4. 80
A1	1. 17	1. 27	1. 37
A2	2. 40	2. 6	2. 80
b	0.60	0.8	1. 00
b1	1. 05	1. 25	1. 45
С	0. 28	0.38	0.48
e	2. 34	2.54	2.74
Е	9. 9	10. 1	10.3
Н	9. 90	10. 1	10.3
H1	8. 50	8.7	8. 90
H2	4. 80	5. 00	5. 20
H3	2. 60	2.8	3. 00
R	0°	3°	6°
Р	2. 40	2.70	3. 00

Notice

Thunder Microelectronics Incorporated Limited reserves the right to make changes without further notice to any products or specifications herein. When use the product, be sure to obtain the latest specification.

Thunder Microelectronics Incorporated Limited does not assume any liability arising out of the application or any product described herein. When using Thunder Microelectronics Incorporated Limited products in your equipment, you are requested to take adequate safety measures to prevent the equipment from causing a physical injury ,fire or other problem if any of the products become faulty.

-Headquarters

WuXi Thunder Microelectronics Incorporated Limited

Building E1-9L, No.200 LingHu Road, XinWu district, WuXi, China 214135

Tel:+86-510-85160109 Fax:+86-510-85160109